
How to Convert a Latin Handwriting Recognition System to Arabic

Marc-Peter Schambach Jörg Rottland Théophile Alary

Siemens AG
marc-peter.schambach

@siemens.com

Siemens AG
joerg.rottland

@siemens.com

Université de
Technologie Troyes

theophile.alary@altheo.net

Abstract

Arabic handwriting recognition systems have been
evaluated in public at the ICDAR conferences in 2005 and
2007. This contest provides well defined training data and
unpublished test data, which makes the performance of
those systems well comparable among each other. The
development of the winning system of 2007 is described
here in some detail. It is an HMM-based recognition sys-
tem for Latin script that has been adapted to Arabic script.
Only the most fundamental modifications have been ap-
plied to the system, like the definition of Arabic character
models, and the change of the feature sequences to Arabic
writing direction. Other important properties like writ-
ing line identification and the features themselves have
not been changed. A straightforward optimization process
with many small improvements has finally lead to a very
competitive high performance Arabic handwriting recog-
nition system. This shows the generality of the selected
approach.

Keywords: script word recognition, Arabic handwrit-
ing, hidden Markov models, optimization process

1 Introduction
For the second time now, the IfN (Institut für

Nachrichtentechnik, TU Braunschweig, Germany) has or-
ganized a competition in Arabic Handwriting recognition
using its IfN/ENIT database of handwritten Tunisian city
names [9]. The results are published at the International
Conferences on Document Analysis and Recognition (IC-
DAR) [7, 6].

For ICDAR 2005, five recognition systems (comple-
mented by one developed by the IfN itself) had been eval-
uated [7]. See Table 1 for an overview of the 2005 results.

At ICDAR 2007, already 8 groups with 14 systems
took part in the contest, proof of the growing interest in
Arabic handwriting recognition [1, 2, 3, 8]. The win-
ning system of 2007, that is described in the following,
has been developed within short time based on an existing
system used for Latin script. In the following sections, the

Table 1. Recognition results of the 2005 ICDAR com-
petition (set e)

system best-1 best-5 best-10
ICRA 65.74 83.95 87.75
SHOCRAN 35.70 51.62 51.62
TH-OCR 29.62 43.96 50.14
UOB 75.93 87.99 90.88
REAM 15.36 18.52 19.86
ARAB-IFN 74.69 87.07 89.77

steps are described that have been taken in order to adapt
this Latin system to Arabic script. It’s a case study of how
to efficiently adapt a high performing handwriting recog-
nition system to another alphabet. It has to be noted that
none of the authors and developers of the system had real
knowledge of Arabic language and script.

2 Arabic Script
The Arabic alphabet is composed of 28 basic letters.

Arabic writing is read from right to left, and top to bot-
tom. Words are segmented into PAWs, “parts of Arabic
words”, each consisting of a group of letters. A word is
composed of one or more PAWs (Fig. 1). There is no dif-
ference between upper and lower case nor between written
and printed letters. Most of the letters connect directly to
the letter which immediately follows, which gives written
text an overall cursive appearance.

Figure 1. Arabic script sample: “Tunis Belvedere”

Each individual letter can have up to four distinct
shapes, dependent on where the letter appears in a word:

• Initial, or medial following a non-connecting letter

• Medial following a connecting letter

• Word-final, following a connecting letter

• Isolated, or word-final following a non-connecting
letter

Generally, final and isolated shapes are very similar,
such as initial and medial shapes. Some combinations of
two or three letters have special shapes called “ligatures”,
they work exactly as Latin ligatures such as œ and æ.

3 Baseline System
Much of the system is based on techniques developed

in 1993 presented in [4, 5]. It’s based on Hidden Markov
Models, one of the most widespread approaches for cur-
sive script recognition, and can process both cursive and
printed script. Over time, a series of improvements has
been applied to the system, e.g. [10]. This section shall
give a short overview of the system

3.1 Image Preprocessing

Preprocessing operations are performed on the image,
the most important steps are [4]:

• Extract the contours as binary connected compo-
nents. It’s a lossless compression and makes the
following operations more efficient.

• Smooth the outlines by Wall approximation [11].
This provides further (lossy) compression and is the
precondition for further efficient calculation.

• Estimate writing lines. From these lines, rotation
and height normalization are deduced.

• Segmentation into frames and zones. The word is
cut into small overlapping vertical frames and hor-
izontal zones from which features vectors are ex-
tracted.

See Fig. 2 for visualization of these steps.

3.2 Feature Extraction

A small sliding window transforms the preprocessed
image into a feature vector sequence, which is interpreted
as the emission of the word HMMs. At each window po-
sition, about 20 real-valued features for various properties
are calculated [4]. See Table 2 for a graphical representa-
tion of the features extracted from the window’s zones.

3.3 Character Models

Each character is modeled by a separate character-
HMM; these are later dynamically composed to word-
HMMs. The character model consists of various “paths”
with left-to-right topology and self transitions. All paths
are jointly followed by an optional pause state. See Fig. 3
for a model with 4 paths and 13 states.

Original image

Contour generation

Wall approximation and shearing

Writing line estimation

Zone normalization and frame overlap

Figure 2. Image preprocessing steps

Each path corresponds to a specific allograph (writing
variant) modeling, thus there are as many paths as there
are allographs of a character. In Latin script, allographs
that are typically modeled are upper and lower case, hand-
print and cursive.

4 Basic Adaptations

The initial step in adaptation to Arabic has been to
make the system run. The existing system had not been
designed to process Arabic words, and as a first step, its
performance without major modifications had to be eval-
uated. To achieve this, only the most essential adaptations
had been performed.

Table 2. Two sets of features extracted from the slid-
ing window’s 6 zones. See [4] for details.

Zone set 1 set 2
Top . | |
XEnd | / \ | / \
Upper Center | / \
Center () | / \ | / \
Base ∨ | / \ ∨ | / \
Bottom | |

Figure 3. Topology of a character HMM, each path
representing an allograph.

4.1 Preprocessing

The biggest difference from Latin to Arabic script is
writing direction. Therefore, the direction of feature ex-
traction had to be reverted. The two straightforward pos-
sibilities, feature sequence reordering and lexical string
inversion, have been implemented.

No other adaptations have been made. Especially has
to be noted that no efforts are spent on detecting PAWs.

4.2 Character Encoding

The next step was to define the Arabic character mod-
eling. The model definitions had to be adapted to the en-
coding used by IfN/ENIT.

Since the baseline system was designed for Latin
characters, there are alternative writing styles allowed
for each letter, intended to allow upper/lower-case and
printed/cursive script distinction. As in Arabic there are
also four distinctions for each letter, depending on their
location within a word, these four variants could be di-
rectly matched to Latin counterparts. A phonetically in-
spired transliteration similar to Buckwalter transliteration
[12] has been chosen which allows direct usage of the ex-
isting training and testing tools.

←
→
ayB|maM|yaM|raE|teA|aaA|haMlaB|jaMllL|aaE|jaA|

(E) ˜(M) ˜(|Y) ˜(r) (p) (a) (=) ˜(J) ˜(a) (j)

Figure 4. Example of Buckwalter inspired translitera-
tion: top: IfN label, bottom: modified Buckwalter label,
with upper/lower case and tilde (˜) specifying writing
style. The arrows indicate writing direction.

Fig. 4 shows an example of transliteration from the
IfN/ENIT label to a “Latin-like” label. It also shows two
types of ligatures: a multiple character ligature “haMlaB”
and a chadda ligature “jaMllL”.

4.3 Parameter Adaptation

The HMM structure of the character models has been
kept, with four writing variants for each character, as
in Latin script (Fig. 3). Parameter adaptation has been
performed by standard Baum-Welch training, an iterative
expectation-maximization (EM) algorithm. Training has
been performed with the data sets a-d which had been pub-
lished for the 2005 contest, tests have been done mostly on
data set e which has been published after 2005 only. The
first results (Table 3) are very promising already.1

5 Advanced Adaptations
Brute force approaches have now been used to adapt

some of the parameters. Most potential for improvements
of the recognition engine has been seen in:

• Writing line estimation and feature extraction.

• Correct and useful modeling of Arabic characters
and its variants.

• Identification of ”simple” errors, e.g. wrong labels.

Many experiments have been performed to find an op-
timal configuration. For each experiment, a full training
has been executed each time preprocessing configurations
or label transliterations have been changed. (Only the af-
fected parts of the system have been re-trained.)

5.1 Preprocessing Parameters

The preprocessor extracts features from images (sec-
tion 3.1). Many parameters have been candidates for op-
timization; only the most promising have been chosen
which leaves room for further improvements. Not ad-
justed have been, for example, weights for baseline es-
timation.

5.1.1 Window Width

Feature generation uses a sliding window, whose
width and overlap can be adjusted (Fig. 5). A window too
narrow may result in the content not be properly analyzed,
while a window too wide may cause incorrect character
segmentation.

Figure 5. Image sampling using a sliding window

1The various experiments seem to make inconsistent use of the
IfN/ENIT database sets a-e. However, this reflects the fact that data set e
got available to developers only during project run time. In addition, the
experiments reported here are not in strict chronological order.

Tests with various window widths from 7 to 13 pixels,
have been performed, with best results at 11 pixels (see
Table 3). The overlap has always been set at 2/3 of the
window width, some other values have been tested with-
out success.

Table 3. Recognition rates with variable window
widths (set d, training on sets a-d)

Width 1-best 5-best 10-best
8 81.38 91.33 93.30
9 82.23 92.30 94.18
10 83.83 93.53 95.00
11 84.72 94.18 95.69
12 83.45 93.33 95.18
13 84.10 93.08 95.06

5.1.2 Writing Line Estimation

The writing lines bound the global shape of the writ-
ing. They are required to perform correct rotation and
height normalization. The preprocessor can use differ-
ent configurations giving various writing line alternatives.
The type of features (Table 2) also depends on these con-
figurations.

5.1.3 Reading Direction

Both inversion methods for writing direction (sec-
tion 4.1) have been tested. Character inversion (reading
from left to right) gives worse results, maybe due to prun-
ing during Viterbi trie evaluation which works best from
word beginning.

5.2 Ligature Modeling

5.2.1 Standard Ligatures

The references labels of the IfN/ENIT database con-
tain 10 ligatures which occur more than 4000 times within
the database. Arabic ligatures differ strongly from the
combination of the independent characters (Fig. 6). This
makes their independent modeling a key issue for recog-
nition performance (Table 4).

Ligature (khMlaB) (laB) and (khM) without ligature

Figure 6. Arabic ligatures examples (IfN/ENIT labels)

5.2.2 Chadda Ligatures

The ligature chadda is special; it looks like a small w
above a character and is used to accentuate the consonant

Table 4. Influence of ligature modeling on recognition
performance (set d, training on sets a-d)

Experiment 1-best 5-best
4 ligatures implemented 89.58 96.53
All ligatures implemented 90.77 96.93

below. Size of the chadda ligature is very variable, it may
be as big as the character below (Fig. 7). It is present at
many characters.

Figure 7. Three styles to write the chadda ligature

As many characters may occur with chadda ligature,
new models for “chadda-ligatured” characters are used:
Out of 40 character models, a set of additional 20 models
with chadda has been created. Recognition rate increases
(Table 5), but computation time also grows since the num-
ber of writing variants within the lexicon grows from 1300
to almost 1700 words. Additionally, with many special
chadda models the risk of over-training arises. Thus cross-
validation has been performed, and only those characters
which frequently appear with chaddas in the training data
have finally been modeled .

Table 5. Influence of chadda ligature modeling (train-
ing on sets a-e)

Experiment set d set e
Without chadda ligature 91.26 83.36
With chadda ligatures (over-trained) 93.05 83.91

5.3 Character Modeling

5.3.1 Character Merging

Some Arabic characters have very similar appearance,
thus we can suppose that merging them into a single
model can increase recognition performance by more dis-
criminative training and avoiding permutation errors with
similar letters (see Tab. 6). Additionally, it allows a
reduced number of writing variants within the lexicon,
which results in faster computation.

5.3.2 Number of Allographs

Arabic characters may have up to four allographs de-
pending on their location within the word. Normally, one
character HMM path (Fig. 3) is used for each allograph,

Table 6. Recognition performance with merged mod-
els (set e)

Training sets abcd abcde abcde abcde
Pruning factor 1.0 1.0 1.3 1.5
Reference 81.89 83.08 83.36 83.33
5 models merged 80.28 83.23 83.44 83.51

but fewer allographs may be modeled if shapes are similar.
The best results are obtained if all allographs are modeled,
even when shapes are very similar. However the gain is
very low (Table 7).

Table 7. Influence of the number of modeled allo-
graphs on recognition rate.

Experiment set d set e
Manual selection of allographs 90.77 82.93
All allographs modeled 90.94 83.08

5.4 Model Length Adaptation

More recently implemented (not included in the 2007
contest release) is adaptive modeling of the HMM model
duration [10]. All models are built with variable length
of the allograph paths, representing the complexity of the
shapes. Since a lot of wide characters exist in Arabic writ-
ing, this feature proved to be effective (Fig. 8). Increase
of recognition rate of about 1% has been measured.

Fixed length With variable length adaptation

Figure 8. With variable length model adaptation,
models better represent the character’s complexity

5.5 Pruning

Pruning is used in order to speed up the recognition
process: For recognition a lexicon trie is built; during
Viterbi decoding, only the locally most probable branches
are kept. The “pruning factor” defines the minimal proba-
bility for a branch to be kept. It strongly affects computa-
tion time (a factor of 2 between 1.0 and 1.3!). However, a
too low pruning factor may cause the globally best result
to be lost, but experiments show, that it also may improve
the recognition rate when optimal but wrong alternatives
are pruned (Table 8).

Table 8. Influence of pruning factor on recognition
rate (set e). The absolute value of the pruning fac-
tor is implementation specific.

Pruning factor 1.0 1.2 1.3 1.5 4.0
Computation time fast slow
Results 83.08 83.28 83.36 83.33 83.33

6 Voting
Voting is used to combine the strengths of various

recognition engines. Also a low performing recognizer
can positively contribute, if it’s results are independent of
the other recognizers. However, using a voter is time-
consuming. Experiments with up to three recognizers
have been performed.

6.1 Maximum Rule

With maximum rule, the recognizer with the high-
est result credibility wins. For two preprocessing con-
figurations, using different writing line estimations, tests
have been performed which show significant performance
gains (Table 9).

Table 9. Maximum rule voting between different pre-
processing configurations (set e, training on sets a-e)

Preprocessing 1 2 1+2 voted
1-best 69.94 83.28 84.87
5-best 84.57 93.65 92.82

6.2 Weighted Sum Voting

Standard sum voting adds all credibilities for each re-
sult alternative; the alternative with the highest sum wins.
This method gives even better results than maximum rule
(Table 10). Results can be raised by further 0.4% with
“weighted sum voting”, where summands are weighted by
recognition performance. Finally, a voting combination of
three recognizers which differ in writing line estimation
(5.1.2) and reading direction (5.1.3) has been chosen.

Table 10. Voting rule influence on recognition results
(set d, training on sets a-e; voting 3 configurations)

Maximum rule Sum voting
1-best 93.76 94.58
5-best 98.11 98.75

7 Results
Two systems have finally been submitted to the con-

test: A fast system, using the single best standalone HMM
recognizer, and the best system, that merges the results of

three different HMM recognizers using weighted sum vot-
ing. Both have been trained with data sets a-e only, no fur-
ther training data has been used. Table 11 shows detailed
results which have been measured by IfN on the submit-
ted systems [6]. The results of all contest participants are
listed in Table 12.

Table 11. Final recognition results (training on sets
a-e; sets f and s are unreleased.)

set d set e set f set s time(ms)
fast 91.23 84.27 82.77 68.09 39.2
best 94.58 88.41 87.22 73.94 109

Table 12. ICDAR 2007 competition results (set f, only
the best system of each group)

system best-1 best-5 best-10
MITRE 61.70 81.61 85.69
CACI(3) 14.78 29.88 37.91
CEDAR 59.01 78.76 83.70
MIE 83.34 91.67 93.48
SIEMENS(2) 87.22 94.05 95.42
UOB-ENST(3) 81.93 91.20 92.76
ICRA 81.47 90.07 92.15
PARIS V 80.18 91.09 92.98

The recognition rate of the initial system (section 4)
has been around 83% (Table 3) and has been improved
by parameter tuning (section 5) and voting (section 6) to
more than 94% on set d. The system doesn’t seem to be
over-trained as results on the unknown set f are compara-
ble to those on the known set e. The recognition rate is
still low on the unpublished set s, which is from writers
from another country and considered to be more difficult.

8 Conclusions
Some reasons may be given how this system could

achieve such a good performance despite the fact that no
domain knowledge has been implemented and only lim-
ited efforts have been spent on it.

First, it shows that the described HMM based script
word recognition method has a high generalization degree
to adapt it with little effort to any other alphabet with sim-
ilar structure.

An explanation may also be recognition speed. It can
often be read, that for the development of a system the
priority is focused on recognition performance and not on
computation time. Basically this is implied by the idea to
first find a working algorithm and to improve its runtime
later on after it proved to be working. This approach has
a major drawback - time is a limited resource for a devel-
oper. Because our system is quite fast, we were able to

perform a lot of experiments during development, result-
ing in a much better system than we would have gotten
with a slower system.

Another reason may be the limited task of the contest.
In general for Arabic recognition, the correct handling
and recognition of dots above and below the characters
is as important as it is difficult. However, in the IfN/ENIT
database of Tunisian town names the dots are not as im-
portant: Even if they were completely ignored, less than
1% of the dictionary entries would become ambiguous.
Thus in this test the dot recognition has an untypical low
importance for Arabic word recognition.

Potential for further increase of recognition rates is
seen in more elaborate chadda modeling (section 5.2.2)
and model length adaptation (section 5.4).

References
[1] A. Abdulkader, ”Two-Tier Approach for Arabic Offline

Handwriting Recognition”, Proc. of the 10th IWFHR, Oct.
2006, La Baule, France.

[2] H. E. Abed and V. Märgner, ”Comparison of Different
Preprocessing and Feature Extraction Methods for Offline
Recognition of Handwritten Arabic Words”, Proc. of the
9th ICDAR, 2007, pp 974–978, Curitiba, Brazil.

[3] R. Al-Hajj, C. Mokbel and L. Likforman-Sulem, ”Com-
bination of HMM-Based Classifiers for the Recognition
of Arabic Handwritten Words”, Proc. of the 9th ICDAR,
2007, pp 959–963, Curitiba, Brazil.

[4] T. Caesar, J. Gloger and E. Mandler, ”Preprocessing and
Feature Extraction for a Handwriting Recognition Sys-
tem”, Proc. of the 2nd ICDAR, Oct. 1993, pp 408–411,
Tsukuba Science City, Japan.

[5] A. Kaltenmeier, T. Caesar, J. Gloger and E. Mandler, ”So-
phisticated topology of hidden Markov models for cursive
script recognition”, Proc. of the 2nd ICDAR, Oct. 1993,
pp 139–142, Tsukuba Science City, Japan.

[6] V. Märgner and H. E. Abed, ”ICDAR 2007 — Arabic
Handwriting Recognition Competition”, Proc. of the 9th
ICDAR, 2007, pp 1274–1278, Curitiba, Brazil.

[7] V. Märgner, M. Pechwitz and H. E. Abed, ”ICDAR 2005
— Arabic Handwriting Recognition Competition”, Proc.
of the 8th ICDAR, 2005, pp 70–74, Seoul, Korea.

[8] F. Menasri, N. Vincent, E. Augustin and M. Cheriet,
”Shape-based Alphabet for Off-line Arabic Handwriting
Recognition”, Proc. of the 9th ICDAR, 2007, pp 969–973,
Curitiba, Brazil.

[9] M. Pechwitz, S. S. Maddouri, V. Märgner, N. Ellouze
and H. Amiri, ”IFN/ENIT-database of handwritten Arabic
words”, Proc. of CIFED, 2002, pp 129–136, Hammamet,
Tunisia.

[10] M.-P. Schambach, ”Model Length Adaptation of an HMM
based Cursive Word Recognition System”, Proc. of the 7th
ICDAR, Aug. 2003, Edinburgh, Scotland.

[11] K. Wall and P.-E. E. Danielsson, ”A Fast Sequen-
tial Method for Polygonal Approximation of Digitized
Curves”, Computer Vision, Graphics, and Image Process-
ing, 28(2):220–227, 1984.

[12] Wikipedia”Buckwalter transliteration — Wikipedia, The
Free Encyclopedia”, http://en.wikipedia.org/
wiki/Buckwalter_Transliteration, 2008.

