
Fast Script Word Recognition with Very Large Vocabulary

Marc-Peter Schambach
Siemens AG, Logistics and Assembly Systems, Postal Automation

78459 Konstanz, Germany
Marc-Peter.Schambach@siemens.com

Abstract

For an HMM-based script word recognition system an
algorithm for fast processing of large lexica is presented.
It consists of two steps: First, a lexicon-free recognition is
performed, followed by a tree search on the intermediate
results of the first step, the trellis of probabilities. Thus, the
computational effort for recognition itself can be reduced in
the first step, while preserving recognition accuracy by the
use of detailed information in the second step. A speedup
factor of up to 15× could be obtained compared to tradi-
tional tree recognition, making script word recognition with
large lexica available to time-critical tasks like in postal au-
tomation. There, lexica with e.g. all city or street names
(20-500k) have to be processed within a few milliseconds.

1 Introduction

Recognition of cursive script has made considerable
progress over the last years. State-of-the-art word recog-
nition engines yield recognition rates that make it usable in
industrial applications like postal automation. But, in that
application area, another crucial requirement is recognition
speed. For postal applications, recognition tasks with large
lexica of sizes up to 500k have to be recognized in 50 to 100
milliseconds. Those tasks arise, for example, in the recog-
nition of addresses written in cursive script, when only view
context is available because e.g. the postal code is missing
and all city hypotheses have to be checked.

The word recognition system discussed here is based on
character level left-to-right HMMs. It has been presented
first in [2, 3] and is described in full detail in [5]. Operating
on lexica of size 100, it achieves recognition rates around
94% (see section 4). By default, recognition is performed
on a character trie, merging word prefixes, and exact like-
lihoods are computed for each lexicon word by the Viterbi
algorithm. While reaching maximum recognition perfor-
mance, recognition times on bigger lexica (size 22000) goes
up to 180 ms (standard PC with 2.8 GHz).

One popular solution to the challenge of large vocabu-
lary is the usage of character N-grams. In [1], a system has
been presented that yields good results, especially in out-of-
vocabulary situations. But, for the given application, checks
against given lexica have to be performed finally, limiting
the utility of the N-gram method. Furthermore, implemen-
tations of N-gram recognition as presented in [7] tend to be
time-consuming. Own experiments achieved runtimes ex-
ceeding the constraints for practical applications.

The solution presented here is a two-step Viterbi decod-
ing, performing context-free recognition in the first step,
building the base for the probability estimation of the lex-
icon words in the second step. This results in a significant
speed-up, by the cost of some loss in recognition accuracy.

The paper is organized as follows. In section 2, the pro-
posed algorithm is presented in detail. Section 3 discusses
the approximations made and sketches a solution for more
accuracy. Section 4 describes some experiments and re-
sults, comparing standard trie recognition with the proposed
method. Consequences of these results are discussed in sec-
tion 5, before a summary and outlook is given in section 6.

2 The algorithm

The proposed algorithm performs two recognition steps
(see Fig. 1):

• In the first (forward) step, a lexicon-free recognition is
performed. This is done by recognition on an automa-
ton that generates any possible character sequence.
This step can be performed fast, because the automa-
ton is small compared to a lexicon trie.

• In the second (backward) step, a breadth-first search on
a trie representing the lexicon is performed. It uses the
results from the first step to estimate the likelihoods for
each path.

The advantage of this method is to keep the complexity of
HMM calculation low in the first step, with only a small
automaton; later on, in the second step with a huge lexicon

Trellis

Backward Step

Dictionary Trie

Trantifurt−−

Automaton

Forward Step

Nominal Hypothesis

...

Figure 1. Algorithm: The first step creates a
likelihood trellis, used by the second step

trie, one is able to use the precomputed likelihood values of
the first step.

2.1 Forward step

In the forward step, HMM calculation is performed with-
out detailed context knowledge. Context is only provided
in terms of alphabet and of the length of the words to be
recognized. It is defined as an automaton, which generates
a superset of all possible words with variable but limited
number of characters. If specified in terms of regular ex-
pressions, German postal codes (5 digits) are defined by
[0-9]{5} (see Fig. 2), while German city names (up to 20
characters) can be defined by [a-Z]{1-20}. In the case
of fixed length, only the last node is an accepting state of
the automaton, while with variable length all intermediate
nodes are accepting states as well.

Compared to a trie representation, there are much fewer
nodes, keeping the number of calculations for emission and
transition probabilities small. Each node has multiple pre-
decessors. To reduce the number of transitions between
nodes, intermediate nodes are introduced; this corresponds
to the transformation into an edge-based graph representa-
tion. Time-consuming maximizations of likelihood during
Viterbi calculation can be reduced this way. A minor draw-
back of the intermediate nodes is given by the fact that the
complexity of the automaton can not be further reduced by
the use of positional character N-grams of lexicon words.

The primary result of Viterbi forward calculation is the
likelihood of the best-fitting sequence of characters (HMM

question 1 in the Rabiner paper [4]). But to extract this se-
quence itself ([4], question 2), the intermediate likelihood
values during Viterbi forward calculations have to be stored
and used in a backtracking step. These values build the trel-
lis and contain all information about the recognition pro-
cess. For each HMM state at each frame the likelihood and
thus implicitly the best predecessor states are stored. They
are of interest especially at the boundaries of the character
nodes.

2.2 Backward step

The single best result of context-free recognition, the
nominal hypothesis, can be found in a backward step,
traversing back the trellis to each best predecessor state.
This hypothesis represents in the case of readable words
mostly a plausible result, but in the majority of cases it is
not a word from the lexicon. Therefore the backtracking
step is adapted to extract the n best likelihoods of words
which are contained in the lexicon.

To facilitate this, a trie is built from the lexicon which
merges the word endings (see Fig. 3). Separate branches
are created for each word length, because different word
lengths correspond to different accepting states in the au-
tomaton the trellis has been build for. In the case of con-
stant lexica the construction of this trie can be done offline,
saving online computation time.

A breadth-first search is performed on this trie to deter-
mine the probabilities of all lexicon words. Trie and trellis
are processed from right to left. For each node, two steps
are conducted:

• Compute the loss in log-likelihood ∆p which results
in choosing this node compared to the best node. The
current frame position is given by the right side’s node
and has been already calculated. Best and actual like-
lihoods are given by the trellis: ∆p = pbest − pnode.
The total loss in log-likelihood for the current branch

55

66

77

88

99

00

44

33

22

11

55

66

77

88

99

00

44

33

22

11

55

66

77

88

99

00

44

33

22

11

55

66

77

88

99

00

44

33

22

11

55

66

77

88

99

00

44

33

22

11

Figure 2. Automaton for forward recognition
of German postal codes

R T

R T

GU T

N

T

KARF

ATS

E R UF

UF

N A U O

TDATSBLA

...

...

Figure 3. Trie for backward result extraction.

is summed up and stored for the active node.

• Determine the best entry frame from the trellis and
store it for use by the next preceding nodes.

Thus for each end node of the trie a total loss of likelihood
is summed up, resulting in an individual likelihood for each
lexicon word. The lexicon words are sorted by this value.
Thus n best results are computed. The computation is per-
formed very efficiently, because only trellis values have to
be indexed and summed up.

2.3 Pruning

Pruning is performed on both the forward and backward
steps. In both cases the aim is to keep the number of nodes
for calculation small. The pruning factors strongly influ-
ence recognition rate and speed and have to be chosen judi-
ciously.

In case of the forward step, the maximum likelihood
pmax is determined at each frame. Given a pruning fac-
tor fforw, a minimum likelihood for all states is defined by
pmin = pmax/fforw. Only those character nodes containing
at least one state more likely than pmin will be included in
the calculations for the next frames; all other branches are
pruned.

At the backward step, the number of active nodes is kept
small in a similar way. Pruning action is taken now dur-
ing breadth-first search at each step down the tree depth.
Again, the maximum likelihood is determined, and all trie-
branches below pmin (defined by a factor fback) are pruned.
Useful values for the pruning factors hold fback <= fforw, in
order to prevent the calculation of branches already pruned
in the first step.

Another speedup is achieved by the estimation of word
length before recognition in order to keep the number of
nodes at a minimum. The estimation is simply based on the
number of frames and the width-to-height-ratio of the input
image.

3 Accuracy of the algorithm

3.1 Approximations

A drawback of the proposed algorithm is that not for
all lexical words the single best segmentation is calculated.
This results from the way the segmentation points are deter-
mined:

• In traditional, exact recognition, all segmentation
points of a given word are chosen to maximize the like-
lihood of this word.

• In the approach presented here, each segmentation
point of a given word maximizes the likelihood of a
word model, consisting of arbitrary characters on its
left side and the word’s character sequence on its right
side.

For example, the segmentation points for the word “Berlin”,
from left to right, are optimal for the word models “*er-
lin”, “**rlin”, “***lin”, “****in” and “*****n” (stars “*”
indicating sequences of arbitrary characters). This could
result in a segmentation that is not optimal for the word
“Berlin” itself. Another, artificial example may illustrate
this. The locally best segmentation of two words “Iiiitown”
and “Wwwwtown” may be different (in case “town” is not
easy readable), but the algorithm would enforce a common
segmentation for the letters “town”.

An example is shown in Fig. 4. The exact calculation
gives a plausible segmentation, while the approximation
calculates some segments differently (and wrong). How-
ever, in the example shown, this segmentation is still good
enough for correct recognition.

3.2 Exact estimation

To overcome the mentioned approximation problem, a
2-step algorithm has been implemented. After recognition
with the proposed algorithm, a traditional, trie based recog-
nition is performed subsequently on the n-best results of

exact

approximated

Figure 4. Segmentation differences

the first step. This way, exact likelihood estimations can
be given for all results.

This procedure results in a re-ordering of the results, thus
improving recognition accuracy. The time penalty of the
second step is low, because tries are small and preprocessing
results can be cached.

4 Experiments and results

Experiments have been conducted to evaluate recogni-
tion time and accuracy. Recognition performance achieved
by the presented algorithm are compared to those obtained
by a system performing exact recognition on a trie. This
system has been in practical use for years, operating typi-
cally on lexica of sizes 10 to 1000. Additionally, results of
nominal (lexicon-free) recognition are presented.

4.1 Interface

The input to word recognition consists typically of a
word image and a lexicon. For the proposed algorithm, a
lexical pattern for the first recognition step is used addi-
tionally. The following recognition modes can be chosen
by providing different types of input:

• Lexicon only: Exact recognition on a trie.

• Pattern and lexicon: The proposed 2-step algorithm;
subsequent exact recognition is optional and triggered
by a corresponding switch.

• Pattern only: Nominal, lexicon-free recognition, pro-
viding one best result alternative.

For each recognition mode, results are presented.

4.2 Test data

Three data sets from the postal automation domain have
been tested. The word images are taken from scanned
German addresses (cursive script style), extracted semi-
automatically.

• 580 postal code images (5 digits; lexicon contains
27540 valid codes)

• 1047 city names (lexicon with 21757 valid names, in-
cluding common abbreviations)

• 1007 street names (lexicon with 478123 valid names,
including common abbreviations)

Examples of test images are shown in Fig. 5. Lexica
are collected from standard databases. All image labels are
contained in the lexica, i.e. no out-of-vocabulary situations
have been tested.

Figure 5. Examples of test images

4.3 Results

Results are shown in Table 1. All experiments have
been conducted with identical configurations; recognition
rates for smaller lexica of size 100 and 1000 are shown to
characterize the recognition engine in standard conditions.
Computations have been performed on a standard PC with
2.8 GHz Pentium 4 processor and 1 GByte memory. For
each algorithm, recognition rate and computation time are
shown.

Each result is strongly dependent on pruning factors.
Pruning factors have been adjusted semi-automatically,
aimed at maximum recognition performance. A decrease
of 0.2% in recognition rate has been accepted if processing
time has dropped significantly.

The first row shows the traditional system. Its recog-
nition rates build the reference on which the new algorithm
has been evaluated. The low recognition rates (around 60%)
are accounted by the large lexica, providing many similar
words, which are counted as errors even in case of only
small misspellings. While computation time may be accept-
able for postal codes and cities, it forbids real applications
in the case of street names.

The second row shows recognition results on the pattern
only. High recognition rates have not been expected, but
the obtained results give a good impression of the difficulty
of the task and the potential of the word recognition engine
itself. The good recognition results for postal codes are due
to the relative simplicity of the segmentation task and the
fact that the pattern corresponds to 105 valid alternatives
only. The computation time corresponds to the first step of
the combined algorithm.

Results of the proposed algorithm are shown in the third
row. Computational times are reduced drastically compared
to the exact approach, but recognition rates are also lower.
Reasons are partly given by the approximations that have
been discussed in section 3.1. These problems are han-
dled by the exact preprocessing which is evaluated in the
4th row. This approach improves recognition performance
by up to 5%, adding only about 10% in computation time.
It always performs better than without post-processing; for
postal codes it even improves the one-step exact calculation.
The overall speed-up factor compared to exact calculation
is up to 15.8×, by an average of 8.6×.

Table 1. Recognition results and computation
times of the various algorithms

Postal codes City names Street names

Images 580 1047 1007
Lexicon = 100 93.6 % 93.6 % 94.9 %
Lexicon = 1000 88.1 % 87.9 % 92.2 %
Lexicon size 27540 21757 478123
Pattern [1-9]{5} [a-Z]{1,15} [a-Z]{1,25}
1 Exact recognition (trie)
Recognition 54.1 % 63.1 % 59.1 %
Time 37.8 ms 178.3 ms 2288 ms
2 Nominal recognition (pattern)
Recognition 44.1 % 4.3 % 2.5 %
Time 3.5 ms 18.7 ms 26.4 ms
3 Approximation (pattern & trie)
Recognition 53.8 % 55.1 % 48.1 %
Time 4.3 ms 44.2 ms 135.7 ms
4 Approximation & exact post-processing
Recognition 54.2 % 60.0 % 51.4 %
Time 5.7 ms 52.0 ms 145.2 ms

Accuracy 100 % 95.1 % 87.0 %
Speed-up 6.6× 3.4× 15.8×

4.4 Discussion

For a reasonable evaluation of the presented results it has
to be noted that with lexica as big as used here, the definition
of recognition and error rates become questionable. This
is mainly due to the increased similarities between alterna-
tives. See [6] for a detailed discussion of this fact. There,
definitions of word similarities and overall recognition qual-
ity have been given. These measures can be estimated with
high accuracy by the results of the forward and backward
recognition step, respectively.

Furthermore, the correct word has always been included
to the test lexicon, thus no reject criteria have been tested
systematically yet. Nevertheless, the experiments give a
good overall impression of the performance and usability
of the proposed algorithm. Additional experiments show
that the calculated measures can be used as reject criteria
superior to the results of exact trie recognition.

5 Conclusions

The main conclusion of the experiments is that cursive
script word recognition is applicable even when no further
context knowledge is given and huge lexica (e.g. all street
names) have to be used. In these cases, high speed is more
important for practical applications than high recognition
performance. Various n-best results on a document (e.g. ad-
dress) may later be correlated on higher levels (e.g. address

level) to yield good overall recognition rates.
The experiments show that the usability of the proposed

algorithm is reduced in cases when the word images get too
wide, as it is the case with street name. These consist quite
often of multiple words. In the case of large images, seg-
mentation errors (as discussed in section 3.1) tend to limit
the possible recognition performance. A solution to this
problem would consist of a multi-step approach with word
level segmentation, followed by multiple word recognition
calls.

6 Summary and outlook

In this paper, an algorithm has been proposed which al-
lows a fast recognition of very large lexica in an HMM
based word recognition system. Besides approximations
that are made, recognition rates are comparable to those
achieved by a system performing exact recognition. A sig-
nificant speed-up of factor 8.6× in average could be ob-
tained. This makes the algorithm useful in applications with
hard time constraints. Next, the algorithm will be included
in an address recognition system to operate in situations
where no initial context knowledge is available to restrict
lexica. Significant improvements for addresses written in
cursive script are expected.

References

[1] A. Brakensiek and G. Rigoll. A comparison of character N-
grams and dictionaries used for script recognition. In Proc. of
the 6th ICDAR, pages 241–245, Seattle, WA, Sept. 2001.

[2] T. Caesar, J. Gloger, and E. Mandler. Preprocessing and fea-
ture extraction for a handwriting recognition system. In Proc.
of the 2nd ICDAR, pages 408–411, Tsukuba Science City,
Japan, Oct. 1993. IEEE Computer Society Press.

[3] A. Kaltenmeier, T. Caesar, J. Gloger, and E. Mandler. So-
phisticated topology of hidden Markov models for cursive
script recognition. In Proc. of the 2nd ICDAR, pages 139–
142, Tsukuba Science City, Japan, Oct. 1993.

[4] L. R. Rabiner. A tutorial on hidden Markov models and se-
lected applications in speech recognition. Proceedings of the
IEEE, 77(2):257–285, Feb. 1989.

[5] M.-P. Schambach. Automatische Modellierung gebundener
Handschrift in einem HMM-basierten Erkennungssystem.
Dissertation, Universität Ulm, 2004.

[6] M.-P. Schambach. A new view of the output from word recog-
nition. In 9th IWFHR, Tokyo, Japan, Oct. 2004.

[7] D. Willett, C. Neukirchen, and G. Rigoll. DUcoder - The
Duisburg University LVCSR stackdecoder. In Proc. of the
ICASSP, Istanbul, 2000.

